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Abstract. Edge bundling methods can effectively alleviate visual clutter and re-
veal high-level graph structures in large graph visualization. Researchers have
devoted significant efforts to improve edge bundling according to different met-
rics. As the edge bundling family evolve rapidly, the quality of edge bundles re-
ceives increasing attention in the literature accordingly. In this paper, we present
MLSEB, a novel method to generate edge bundles based on moving least squares
(MLS) approximation. In comparison with previous edge bundling methods, we
argue that our MLSEB approach can generate better results based on a quantita-
tive metric of quality, and also ensure scalability and the efficiency for visualizing
large graphs.
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1 Introduction

Traditional exploration methods of large graphs are often overwhelmed by severe vi-
sual clutter such as excessive vertex overlappings and edge crossings. Edge bundling
is one of the effective approaches to reducing edge crossings in graph drawings. The
main idea of edge bundling is to visually merge edges with similar features (e.g., po-
sition, direction, and length) such that edge crossings are significantly reduced and the
readability of graph drawings is improved.

Substantial efforts have been made to develop various edge bundling algorithms
to improve visual results. The current edge bundling family have provided a diverse
graph layouts that work with a wide spectrum of applications and domains based on
different strategies or metrics [22]. As the edge bundling techniques develop rapidly,
the information visualization community is putting increasing interests in evaluating
the results of edge bundle drawings. The readability and faithfulness criteria are often
used to evaluate graph drawings. Edge bundling helps simplify graph drawings and
increase readability, but yields distortions to make it hard to preserve the faithfulness
of original graphs [32]. To holistically address the evaluation of both readability and
faithfulness for edge bundling visualization, Lhuillier et al. [22] suggested a general
metric where a ratio of clutter reduction to amount of distortion is computed to measure
the quality of edge bundling visualization. In this work, we aim to generate high-quality
edge bundling results based on Lhuillier’s metric, and meanwhile ensure scalability and
efficiency.



We introduce a novel edge bundling technique to generate edge bundles with mov-
ing least squares (MLS) approximation, namely MLSEB. Inspired by thinning an un-
organized point cloud to curve-like shapes [20], we use a distance-minimizing approx-
imation function to generate bundle effects. In particular, we first sample a graph into
a point cloud data, and then use a moving least squares projection to generate curve-
like bundles. Based on Lhuillier’s metric, we develop a quality assessment to evaluate
edge bundling result. Using different real-world datasets, we demonstrate that MLSEB
can produce bundle results with a higher quality, and is scalable and efficient for large
graphs by comparing different edge bundling methods.

2 Related Work

The recent study [22] has surveyed the state-of-the-art edge bundling techniques and
their applications in a very detailed manner. We revisit some of these methods by briefly
summarizing the categories of the diverse bundling techniques. We consider our method
as an image-based method, and hence we will discuss the image-based methods in more
detail. We will also cover some studies of quality evaluation in edge bundling and some
studies on moving least squares approximation.

Holten [11] pioneered the edge bundling techniques in graph drawings using a hi-
erarchical structure. Geometric-based methods [4, 17, 18, 25] used a control mesh to
guide bundling process. Energy-based minimization methods have been also used in
many studies. Examples include ink-minimization methods [8, 9] and force-directed
methods [12, 31, 38, 44, 45]. Most of these methods used compatibility criteria to mea-
sure the similarity of different edges based on spatial information (i.e., length, position,
angle, and visibility), and then moved the similar edges with ink-minimization or force-
directed strategies.

Image-based techniques used density assessments to guide bundling process [3, 6,
13, 23, 34, 46]. These methods are generally based on Kernel Density Estimation. Ker-
nel density estimation edge bundling (KDEEB) [13] first transformed an input graph
into a density map using kernel density estimation, and then moved the sample points
of edges towards the local density maxima to form bundles. Peysakhovich et al. [34] ex-
tended KDEEB using edge attributes to distinguish bundles. CUDA Universal Bundling
(CUBu) [46] used GPU acceleration to enable interactively bundling a graph with a
million edges. Fast Fourier Transform Edge Bundling (FFTEB) [23] improved the scal-
ability of density estimation by transforming the density space to the frequency space.

There are other edge bundling studies. Bach et al. [2] investigated the connectivity
of edge bundling methods on Confluent Drawings. Nguyen et al. [30] proposed an edge
bundling method for streaming graphs, which extended the idea of TGI-EB [31]. Wu
et al. [43] used textures to accelerate bundling for web-based applications. Kwon et
al. [16] showed their layout, rendering, and interaction methods for edge bundling in an
immersive environment.

Serval studies introduced general metrics to quantify the readability [5, 36, 37, 39]
and the faithfulness [29] of graph drawings. Some existing studies in edge bundling
have defined quality assessments to evaluate the resulting bundles. Nguyen et al. [32]
conducted a study on the faithfulness for force-directed edge bundling methods. Telea



et al. [40] posed a comparison between different hierarchical edge bundling meth-
ods. Telea et al. [41] surveyed the hierarchical edge bundling techniques and posed
a comparison of the quality of bundled and unbundled graphs. Pupyrev et al. [35]
and Kobourov et al. [15] worked towards measuring edge crossings. KDEEB [13] and
CUBu [46] proposed post-relaxation if the distortion of edge bundles is too large, such
that the mental map is preserved. For dynamic and sequence graph edge bundling,
Hurter et al. [14] used interpolation to preserve the mental map between sequence
graphs. McGee et al. [26] conducted an empirical study on the impact of edge bundling.

Moving least squares (MLS) has been widely used to approximate smooth curves
and surface from unorganized point clouds [1, 21, 27]. Lee [20] constructed a curve-like
shape from unorganized point clouds using an Euclidean minimum spanning tree. Least
square projection (LSP) has been used in graph drawings [33], where multidimensional
data points are projected into lower dimensions, while the similar relationship in neigh-
boring points is preserved.

3 Background

3.1 Definition of Edge Bundling

We first revisit a formal definition of edge bundling [23]. Let G = (V,E) ⊂ R2,V =
{vi},E = {ei} be a graph, where vi is a vertex and ei is an edge of G. Let D : E → R2

be a drawing operator, such that D(G) represents the drawing of G and D(ei) represents
the drawing of an edge ei. We define a compatibility operator κ , where κ(ei,e j) mea-
sures the similarity of two edges ei and e j. Edges that are more similar than a threshold
κmax should be bundled together, and κ can be used with some reasonable attributes
and metrics(e.g., spatial information [12]). Let B : D → D be a bundling operation,
where D ⊂ R2 denotes the space of all graph drawings, and B(D(ei)) denotes the re-
sulting bundled drawing of ei. For example, D(ei) can be a straight line drawing and
B(D(ei)) can be a drawing of curve or polyline. Hence, an edge bundling algorithm can
be expressed as:

∀(ei ∈ G,e j ∈ G)|κ(ei,e j)< κmax→
δ (B(D(ei)),B(D(e j)))� δ (D(ei),D(e j)),

(1)

where δ is a distance metric in R2. Different edge bundling approaches explored various
κ , B, and δ to tackle Equation 1 to gain different visual effects of edge bundling [22].

3.2 Quality of Edge Bundling

Edge bundling techniques trade the increase of readability with overdrawing by bend-
ing edges to form bundle effects. Hence, edge bundle techniques naturally generate
distortion from original graphs. To quantify the quality of a bundled graph, Lhuillier et
al. [22] suggested to use the ratio of clutter reduction C to amount of distortion T as a
quality metric Q, i.e.,

Q =
C
T
, (2)



In general, a larger Q corresponds to a higher quality, and vice versa. Lhuillier et al. [22]
future posed a distortion measure. Simply, for an edge ei, the distortion between an
unbundled drawing D(ei) and a bundled result B(D(ei)) is measured by computing
the distance between them, i.e., δ (D(ei),B(D(ei))). Therefore, the overall distortion T
between an original unbundled graph and its bundled result can be defined as:

T =
n

∑
i=1

δ (D(ei),B(D(ei))), (3)

where n is the number of edges. Equation 3 provides an intuitive metric to evaluate the
distortion generated by a bundled graph. The calculation of clutter reduction has not
been fully concluded in the existing work. We propose a simple method to evaluate
clutter reduction C, modify Equation 3 to compute T , and then use C and T to quantify
the quality Q of edge bundling (Section 6.2).

4 Our Bundling Algorithm

The main purpose of edge bundling is to achieve appealing visual effects by bending
edges, expressed by Equation 1. Meanwhile, according to Equation 2, an ideal algo-
rithm should increase clutter reduction C, while decrease amount of distortion T , in
order to achieve a higher quality Q of edge bundling. Therefore, we should holistically
address Equations 1 and 2, which, however, has not been fully investigated in the exist-
ing work [22].

4.1 Sampling

In general, given a graph G, a polyline is used to draw the line or curve presentation
of an edge ei. Sample points xi

k, namely sites, are used to discretize the drawing of ei.
Formally,

{xi
k|1≤ k ≤ mi} ≈ D(ei), (4)

where mi is the number of sites for D(ei). Note, many methods [13, 23, 34, 46] use
a small sampling step that is a small fraction of the size of the display to sample each
edge, which means the number of sites of D(ei) may be different. Similarly, the bundled
drawing can also be discretized as:

B({xi
k|1≤ k ≤ mi})≈ B(D(ei)). (5)

We measure the distortion between D(ei) and B(D(ei)) by summing the Euclidean dis-
tance between each pair of xi

k and B(xi
k). Let | · | denote the Euclidean distance. Replace

the edges in Equation 3 using Equation 4 and Equation 5, we have

T =
n

∑
i=1

(
mi

∑
k=1
|{xi

k},B({xi
k})|). (6)

Similarly, Equation 1 can be modified as:

∀(ei ∈ G,e j ∈ G)|κ(ei,e j)< κmax→

|B({xi
k}),B({x

j
k})| � |{x

i
k},{x

j
k}|.

(7)



Therefore, we discretize each edge drawing D(ei) of G by Equation 4. All the sam-
ple points generated by Equation 4 form a point cloud. According to Equation 7, xi

k is
moved to a new position B(xi

k) by a bundling operator B. In the case of kernel density
estimation edge bundling [13, 23, 34, 46], xi

k is moved to B(xi
k) according to its local

density gradient. These methods form the bundles by gathering sample points to their
local density maxima, but do not consider the distortion of edges when moving sample
points. Therefore, certain artifacts, such as lattice effects and subsampled edge frag-
ments, can be incurred. The methods, such as resampling and post-relaxation [13, 46],
have been proposed to address these issues. However, these methods typically introduce
a significant performance overhead that is challenging to alleviate [46]. We develop a
new bundling operator B with respect to Equation 7, and minimize the distortion of each
sample point locally. Moreover, our method does not require resampling, and thereby
can reduce the computational cost.

4.2 Moving Least Squares Approximation

We consider all the points formed by sampling, and assess the global distortion by
expressing Equation 6 as:

T =
S

∑
i=1
|xi−B(xi)|2, (8)

where xi is a site in the point cloud, and S represents the total number of sites of all
edges. We aim to minimize T .

We assume there is a skeleton near xi and its neighborhood locally. A skeleton can
be a suitable place to gather curves to form bundles [6]. Assume a skeleton can be inter-
preted as an implicit polynomial or piece-wise polynomial curve fi, which is unknown.
The unknown fi can be gained by computing the coefficients of fi, i.e., by minimizing
the following weighted least squares error ε within a set H (xi) consisting of xi and its
neighbor sites:

ε =
hi

∑
j=1
|x j− fi|2θ(|x j− xi|), (9)

where xi ∈H (xi), x j ∈H (xi), hi is the size of H (xi), and |x j− fi| means the shortest
Euclidean distance between x j and fi. We define the bundling operator B on xi as a two-
step procedure: first to construct fi, and then to project xi onto fi. The projected point is
thereby B(xi) that is on fi. The distance |xi−B(xi)| from xi to B(xi) is locally minimized
by an appropriate nonnegative weighting function θ . The input of θ is |x j− xi|, which
is the distance of neighborhood x j to the site xi. Instead of taking all sites of a graph
into account, we use a circle of radius r (or namely bandwidth) centered at xi to collect
the neighborhood x j for xi.

If θ ≡ 1, a least squares (LS) approximation is generated. However, LS approxima-
tion does not work well to generate a polynomial curve that locally reflects the density
distribution of neighborhood. Alternatively, the moving least squares (MLS) method
can reduce a point cloud to a thin curve-like shape that is a near-best approximation
of the point set [20, 21]. Hence, we use a local assessment to approximate fi [19]. The



weighting function we use is a cubic function [27]:

θ(d) =


2

d3

r3 −3
d2

r2 +1 if d < r,

0 if d ≥ r,

(10)

where d = |x j− xi|. In this sense, minimizing Equation 9 leads to an MLS approxima-
tion so that fi is a local regression curve, and |xi−B(xi)| is locally minimized. In other
words, the distortion is locally minimized.

Fig. 1. Two steps of our
bundling operator B on a site
xi u in an iteration u. First,
a local implicit regression
curve fi u is constructed by
the neighborhood of xi u with
a bandwidth r using the MLS
approximation. Second, xi u
is moved to a new position
xi (u+1) that is the projection of
xi u on fi u.

In our work, we use an MLS approximation to eval-
uate the distance |x j− fi| for the neighborhood H (xi)
of xi. Therefore, we use a basic projection [19] to con-
struct the implicit local regression curve fi: We take a
partial derivative of Equation 9 with respect to each co-
efficient of fi, make each partial derivative equal to zero,
and then solve the system of equations to generate all the
coefficients of fi [28].

Similar to existing work [6, 13, 23, 34, 46], we im-
plement our bundling operator B through an iteration
strategy. In our method, two steps are applied iteratively,
as shown in Figure 1. We initially treat xi as xi 0. Then,
in each iteration u, the first step is to construct an op-
timal regression curve fi u by thinning the unordered
point cloud within H (xi u), the neighborhood of xi u. In
the second step, we project xi u onto fi u and obtain the
projected point xi (u+1), i.e., B(xi u). In this way, a site
xi u is moved to xi (u+1) based on the weighting function
θ of its neighborhood H (xi u). Different from the ker-
nel density estimation methods [6, 13, 23, 34, 46], MLS
moves the site xi u in the sense that the local error ε is
bounded with the error of a local best polynomial ap-
proximation [20]. In our current work, this process stops
when the iteration number reaches a predefined thresh-
old. Then, for each edge, we compute a B-spline curve
based on the final positions of its sites. Figure 2 shows
an example with two different iterations. For an illustra-
tion purpose, we show the corresponding B-spline curves for the iterations. In Figure 2,
we can see that a curve-like skeleton is gradually formed from the point cloud through
the iterations in the top row, and a bundle effect becomes increasingly distinct as shown
by the B-spline results in the bottom row.

Most of the existing image-based techniques use kernel density estimation (KDE),
essentially, a mean-shift method that evaluates the local density maxima and advects
a site based on the gradients of the local density. However, KDE does not consider
the distortion (Equation 3) when moving sample points, and thus resampling or post-
relaxation is often required [13, 46]. Alternatively, our MLSEB method uses an MLS



Iteration 0 Iteration 2 Iteration 8

Fig. 2. Using an US airline dataset as an example, we first sample each edge into a set of points
(or sites). The resulting sites form a point cloud (top-left). The top row shows the point cloud
is converged through an iterative MLS processing. The bottom row shows the corresponding B-
spline results. The first column shows the initial result before MLS. The following columns show
the results generated after the 2nd and 8th iterations, respectively.

approximation that projects a site xi to its local regression curve fi, where fi is lo-
cally approximated by minimizing the distance between H (xi) and fi with a weighted
function (Equation 9). Therefore, the distance between its original position xi and its
projected position B(xi) is locally minimized based on the density of its neighborhood
H (xi). One advantage of our method is that MLS does not need to resample each edge
in bundling iterations because sites are projected into curves that do not generate over-
coverage artifacts or lattice effects. Fröhlich et al. [7] showed that MLS produced better
coverage results than KDE in biological studies. However, it remains an open question
to determine if KDE or MLS is better than one another in edge bundling. In Section 6.2,
we will develop a quality assessment from Equation 2, and use it to evaluate and com-
pare the quality of the drawings generated by our MLSEB method, the FFTEB method
(a KDE-based method), and the FDEB method (a force-directed method).

5 Implementation

Our implementation involves simple data structures and computations, and thus is easy
to implement. First, we sample the edges of an input graph. We use the same scheme
as KDEEB’s [13] to sample the input edges with an uniform step ρ . The most time
consuming step in our method is gathering the neighborhood for every site. A typical
solution in a GPU implementation is to use Uniform Grid [10] that subdivides the space
into uniformly sized cells. We use this method and set the size of the cell to be 2

3 r (r is
a prescribed radius or bandwidth) such that we can limit the search space of each site
to only cover at most 9 grid cells [10], thus avoiding a O(S2) search time for S sites.

At the start of each iteration, all the sites are put into the corresponding cells ac-
cording to their current positions. This can be easily parallelized using CUDA on a
GPU [10]. Then, we project each site onto its local regression line. The solution to
compute the coefficients of Equation 9 is introduced in many work [19, 28]. It only



requires a constant time to solve the coefficients of a linear or quadratic system of equa-
tions. This can also be parallelized using a GPU because computing the new projection
position for every site is independent.

To enhance the visualization of a bundled graph, we use the same shader scheme of
CUBu [46]. We use the HSVA (i.e., hue H, saturation S, value V , and alpha A) color
representation to visualize edges. Each edge site xi is encoded with an HSVA value. We
encode the direction and the length of the corresponding edge into H and S, respectively.
V and A are used with a parabolic profile function c:

c(x) =
√

1−2|t(x)− 1
2 |, V (x) = l

lmax
+(1− l

lmax
)c(x), A(x) = α(1− l

lmax
+ l

lmax
c(x)) (11)

where l is the length of the edge, lmax is the longest edge in the graph, t ∈ [0,1] is the
edge arc-length parameterization, and α controls the overall transparency of all edges.

Next, we analyze the complexity of our MLSEB method. Similar to the existing
KDE-based methods [13, 23, 34, 46], MLSEB samples a graph into sites with a step ρ ,
and iteratively moves each site based on a weighted function of its neighborhood. All
the methods require gathering neighbor sites for computation. After gathering, KDE-
based methods conduct kernel splatting, gradient calculation, and site advecton, which
use a constant time for each site. In MLSEB, the time to solve Equation 9 and project a
site to its local approximated curve is also constant for each site. Thereby, the complex-
ity of MLSEB is the same as the traditional KDE-based methods, which is O(I ·N ·S),
where I is the image resolution, N is the number of bundling iterations, and S is the
number of sample points. However, MLSEB does not need additional operations, such
as resampling, that are employed in the existing KDE-based methods.

We explore the parameter choices of MSLEB as follows. Similar to most the exist-
ing edge bundling methods, we use a step ρ , which is 5% of the image resolution I, to
sample each edge. The bandwidth, r, plays an important role in MLS to estimate the
density information around each site. A larger bandwidth captures more sample sites to
reflect a more global feature, while a smaller bandwidth reveals a more local feature.
By following a similar strategy in FDEB [45] and KDEEB [13], we decrease r by a
reduction factor λ after each iteration. Hurter et al. [13] stated that a kernel size follows
an average density estimation when 0.5≤ λ ≤ 0.9. We set r to be 5%≤ r≤ 20% of the
display size I to generate a stable edge-coverage result. Through a heuristic study, we
found that it is sufficient to yield good results by setting the iteration number N between
3 and 10 and making the polynomial order of fi in Equation 9 to be 1 or 2.

6 Results

6.1 Visualization and Performance Results

We apply our MLSEB method to several graphs and compare its effect and computa-
tional performance to the two existing methods: FDEB that is the classic force-directed
method, and FFTEB that is the latest enhanced KDE-based method of image-based
edge bundling algorithms, such as KDEEB and CUBu.

The left column in Figure 3 compares the visualization results of our MLSEB
method with other bundling methods using the US airline dataset (2101 edges). Our



(a) (b)
Original Node-link Diagrams

(c) (d)
FDEB

(e) (f)
FFTEB

(g) (h)
MLSEB

Fig. 3. Visualize the US airline dataset (the left column) and the US migration dataset (the right
column) with three different edge bundling methods, FDEB, FFTEB and MLSEB, respectively.

MLSEB method provides similar results, and generates tight, smooth and locally well-
separated bundles. High-level graph structures are also revealed in our results. The
right column in Figure 3 shows the comparison using the US migrations dataset (9780
edges). Figure 4 shows another example using the France airline dataset with 17274
edges. In these results, the main migrations and airline patterns are clearly revealed us-
ing MLSEB. In the migrations dataset, FDEB and FFTEB fall short in showing some



FDEB FFTEB MLSEB

Fig. 4. Visualize the France airline dataset (17274 edges) with FDEB, FFTEB, and MLSEB.

FFTEB MLSEB

Fig. 5. Comparison of FFTEB and MLSEB using a large US migrations dataset (545881 edges).

subtle structures of the original graph. For example, in the original node-link diagram
of Figure 3(b), the edges (within the red box) connect the city of Portland to some
cities in the northern U.S are distorted significantly from their original positions in the
results of the FDEB (Figure 3(d)) and FFTEB (Figure 3(f)), while our MLSEB result
has a distinguished bundles effect that reveals this subtle graph structure. In Figure 5,
we compare the visual result of MLSEB to FFTEB using a large US migrations dataset
with 545881 edges. We encode the color of a edge with only its length in this example.
MLSEB shows more long-length edge patterns than FFTEB.

Table 1 shows the performance comparison between our MLSEB method and the
current fastest edge bundling method FFTEB. In our performance comparison, we used
the US airline graph, the US migrations graph, the France airline graph, and the large
US migrations graph. The timing results for MLSEB and FFTEB are based on one iter-
ation, and we excluded the timing of memory allocation and data transferring for both
methods. The devices used in our experiments are a desktop with an 8X Intel Core i7-
6700K 4.0GHz CPU with 32GB memory and a NVIDIA GeForce GTX TITAN X GPU.
Comparing with the fastest algorithm FFTEB in the state-of-the-art, we can clearly see



Graph Edges FFTEB MLSEB
Samples Time (ms) Samples Time (ms)

US airline 2180 105K 40 85K 22
US migrations 9780 489K 48 207K 38
France airline 17274 864K 70 990K 94
Large US migrations 545881 6.4M 123 5.8M 554

Table 1. Performance comparison.

that MLSEB is at the same order of magnitude of FFTEB in terms of computation
speed, as shown in Table 1.

6.2 Quality Assessment of Bundled Graphs

Apart from comparing the visualization and performance results, based on Equation 2,
we also propose a quality metric to evaluate the quality of produced bundling drawings.

Equation 2 gives a general quality metric Q based on the ratio of clutter reduction C
to amount of distortion T . However, the quantification of clutter reduction C has been
not fully concluded in existing work. We propose to employ the reduction of the used
pixel number ∆P in a graph drawing to measure C. Specifically, C = ∆P = P−P′ that
is the difference of the used pixel number P of the original drawing and the used pixel
number P′ of the bundled drawing.

Intuitively, T can be given by Equation 6 that quantifies the total distortion of all the
sample points. However, different methods can generate different numbers of sample
points. For example, FDEB generates the same number of sample points for each edge,
while our MLSEB method and the KDE-based methods sample different edges into
different numbers of points. Thus, instead of the total distortion of all the sample points,
we use the average distortion: T = T

S , where S is the total number of the sample points
in the graph. Therefore, we modify Equation 2 to

Q =
∆P
T

. (12)

The rationale of Equation 12 is to measure how many pixels are decreased by generating
one unit distortion. The higher value of Q, the higher quality is gained. Table 2 shows the
quantitative quality comparison between our MLSEB method, FDEB and FFTEB. Our
comparison is based on the drawings with an image resolution of 400×400, as shown
in Figures 3, 4, and 5. All the statistic results are generated after a graph is bundled, i.e.,
after all iterations. We note that it is less sense to compare the distortion in each iteration
because the initial iterations of some methods, such as FDEB and FFTEB, may have
surprisingly large distortions. It is more reasonable to compare the quality of results
after the bundling iterations are finished. We also note that using different parameters,
such as different iteration numbers and different bandwidths for different methods, can
yield different results. We use the recommended parameters in FDEB’s and FFTEB’s
papers [12, 23], which are the best results we can get from the existing work. The S



Graph Edges FDEB FFTEB MLSEB
S P P′ T Q S P P′ T Q S P P′ T Q

US airline 2180 813K 32K 25K 1.10K 6.2 105K 32K 18K 1.2K 11.9 85K 32K 19K 0.88K 14.4
US migrations 9780 3785K 34K 26K 0.88K 8.9 489K 32K 24K 1.0K 7.60 207k 33k 25k 0.92k 9.20
France airline 17274 6685K 81K 72K 2.60K 3.7 864K 81K 57K 1.6K 21.3 990K 81K 60K 0.80K 26.0
Large US migrations 545881 n/a n/a n/a n/a n/a 6.4M 108k 84k 1.8k 13.3 5.8M 107k 95k 0.90 13.3

Table 2. Quality comparison using the US migrations graph.

columns in Table 2 show the numbers of the sampling points in a graph using different
methods.

We can see that the quality of MLSEB is generally better than the other two methods
in terms of Equation12. For the four different datasets, FFTEB makes the most clutter
reduction. However, it also incurs more distortion. FDEB achieves a comparable qual-
ity as ours for the US migrations dataset; whereas, when the dataset is getting larger
(France airline), FDEB will generate tremendous distortion, as shown in Table 2 and
Figure 4, thus lowering the quality score. Note, when using the large US migrations
dataset, the advantage of MLSEB over FFTEB becomes marginal. Overall, MLSEB
generates visually appealing results for the four different datasets, and at the same time,
gains the highest quantitative scores in terms of quality according to Equation 12.

7 Conclusions and Future Work

We present a new edge bundling method MLSEB that holistically considers distortion
minimization and clutter reduction. Inspired by the MLS work [1, 20], our approach
generate bundle effects by iteratively projecting each site to its local regression curve
to converge with other nearby sites based on its neighborhood’s density. Such a local
regression curve can reduce the distortion of the local bundle. Our method is easy to
implement, and the timing result shows MLSEB is at the same order of magnitude of
the current fastest edge bundling method FFTEB in terms of computation speed.

We use a quality assessment to evaluate the quality of resulting edge bundles. Our
MLSEB method shows better results in our preliminary comparison. However, a more
comprehensive comparison between our MLSEB method and the other methods re-
quires further investigation, where other factors (e.g., edge crossing reduction) may be
also considered. In addition, we plan to apply optimal bandwidth selection [24, 42] to
improve MLSEB. We would also like to incorporate semantic attributes into MLSEB to
enhance bundling results. Last but not least, bundling a very large graph (e.g., one with
billions or trillions of edges) remains a very challenging task, which is a next possible
direction in our future work.
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P.C. (eds.) Visualization and Monitoring of Network Traffic. No. 09211 in Dagstuhl Semi-
nar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl,
Germany (2009)

41. Telea, A., Ersoy, O., Hoogendorp, H., Reniers, D.: Comparison of node-link and hierarchi-
cal edge bundling layouts: A user study. In: Keim, D.A., Pras, A., Schönwälder, J., Wong,
P.C. (eds.) Visualization and Monitoring of Network Traffic. No. 09211 in Dagstuhl Semi-
nar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl,
Germany (2009)

42. Wang, H., Scheidegger, C.E., Silva, C.T.: Bandwidth selection and reconstruction quality
in point-based surfaces. IEEE Transactions on Visualization and Computer Graphics 15(4),
572–582 (July 2009)

43. Wu, J., Yu, L., Yu, H.: Texture-based edge bundling: A web-based approach for interactively
visualizing large graphs. In: 2015 IEEE International Conference on Big Data (Big Data).
pp. 2501–2508 (Oct 2015)

44. Zhou, H.: Visual Clustering in Parallel Coordinates and Graphs. Ph.D. thesis (2009),
aAI3398258

45. Zielasko, D., Weyers, B., Hentschel, B., Kuhlen, T.W.: Interactive 3d force-directed edge
bundling. In: Proceedings of the Eurographics / IEEE VGTC Conference on Visualization.
pp. 51–60. EuroVis ’16, Eurographics Association, Goslar Germany, Germany (2016)

46. van der Zwan, M., Codreanu, V., Telea, A.: Cubu: Universal real-time bundling for large
graphs. IEEE Transactions on Visualization and Computer Graphics 22(12), 2550–2563 (Dec
2016)


